1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
| from __future__ import annotations
import builtins import locale import math import os from collections import Counter from collections.abc import Iterable from typing import IO, Any, BinaryIO
import numpy as np import numpy.typing as npt import regex import tiktoken import torch import torch.nn.functional as F from jaxtyping import Bool, Float, Int from torch import Tensor from torch.nn.utils import clip_grad_norm_
def _ensure_utf8_locale() -> None: try: preferred = locale.getpreferredencoding(False) except Exception: preferred = "utf-8" if preferred.lower() != "utf-8": locale.getpreferredencoding = lambda *_args, **_kwargs: "utf-8"
_ensure_utf8_locale()
_ORIGINAL_OPEN = builtins.open
def _utf8_default_open( file, mode="r", buffering=-1, encoding: str | None = None, errors: str | None = None, newline: str | None = None, closefd: bool = True, opener=None, ): if "b" not in mode and encoding is None: encoding = "utf-8" return _ORIGINAL_OPEN(file, mode, buffering, encoding, errors, newline, closefd, opener)
builtins.open = _utf8_default_open
GPT2_PRETOKENIZER_PATTERN = ( r"""'s|'t|'re|'ve|'m|'ll|'d| ?[\p{L}]+| ?[\p{N}]+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" )
def run_linear( d_in: int, d_out: int, weights: Float[Tensor, " d_out d_in"], in_features: Float[Tensor, " ... d_in"], ) -> Float[Tensor, " ... d_out"]: """ Given the weights of a Linear layer, compute the transformation of a batched input.
Args: in_dim (int): The size of the input dimension out_dim (int): The size of the output dimension weights (Float[Tensor, "d_out d_in"]): The linear weights to use in_features (Float[Tensor, "... d_in"]): The output tensor to apply the function to
Returns: Float[Tensor, "... d_out"]: The transformed output of your linear module. """
if tuple(weights.shape) != (d_out, d_in): msg = f"weights shape {tuple(weights.shape)} does not match ({d_out}, {d_in})" raise ValueError(msg)
return F.linear(in_features, weights, bias=None)
def run_embedding( vocab_size: int, d_model: int, weights: Float[Tensor, " vocab_size d_model"], token_ids: Int[Tensor, " ..."], ) -> Float[Tensor, " ... d_model"]: """ Given the weights of an Embedding layer, get the embeddings for a batch of token ids.
Args: vocab_size (int): The number of embeddings in the vocabulary d_model (int): The size of the embedding dimension weights (Float[Tensor, "vocab_size d_model"]): The embedding vectors to fetch from token_ids (Int[Tensor, "..."]): The set of token ids to fetch from the Embedding layer
Returns: Float[Tensor, "... d_model"]: Batch of embeddings returned by your Embedding layer. """
if tuple(weights.shape) != (vocab_size, d_model): msg = f"weights shape {tuple(weights.shape)} does not match ({vocab_size}, {d_model})" raise ValueError(msg)
token_ids = token_ids.to(torch.long) return F.embedding(token_ids, weights)
def run_swiglu( d_model: int, d_ff: int, w1_weight: Float[Tensor, " d_ff d_model"], w2_weight: Float[Tensor, " d_model d_ff"], w3_weight: Float[Tensor, " d_ff d_model"], in_features: Float[Tensor, " ... d_model"], ) -> Float[Tensor, " ... d_model"]: """Given the weights of a SwiGLU network, return the output of your implementation with these weights.
Args: d_model (int): Dimensionality of the feedforward input and output. d_ff (int): Dimensionality of the up-project happening internally to your swiglu. w1_weight (Float[Tensor, "d_ff d_model"]): Stored weights for W1 w2_weight (Float[Tensor, "d_model d_ff"]): Stored weights for W2 w3_weight (Float[Tensor, "d_ff d_model"]): Stored weights for W3 in_features (Float[Tensor, "... d_model"]): Input embeddings to the feed-forward layer.
Returns: Float[Tensor, "... d_model"]: Output embeddings of the same shape as the input embeddings. """ if d_model <= 0 or d_ff <= 0: raise ValueError("d_model and d_ff must be positive")
gate = F.linear(in_features, w1_weight, bias=None) up = F.linear(in_features, w3_weight, bias=None) activated = F.silu(gate) * up return F.linear(activated, w2_weight, bias=None)
def run_scaled_dot_product_attention( Q: Float[Tensor, " ... queries d_k"], K: Float[Tensor, " ... keys d_k"], V: Float[Tensor, " ... values d_v"], mask: Bool[Tensor, " ... queries keys"] | None = None, ) -> Float[Tensor, " ... queries d_v"]: """ Given key (K), query (Q), and value (V) tensors, return the output of your scaled dot product attention implementation.
Args: Q (Float[Tensor, " ... queries d_k"]): Query tensor K (Float[Tensor, " ... keys d_k"]): Key tensor V (Float[Tensor, " ... values d_v"]): Values tensor mask (Bool[Tensor, " ... queries keys"] | None): Mask tensor Returns: Float[Tensor, " ... queries d_v"]: Output of SDPA """ d_k = Q.shape[-1] if d_k == 0: raise ValueError("d_k must be positive")
scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: fill = torch.finfo(scores.dtype).min mask = mask.to(dtype=torch.bool, device=scores.device) if mask.shape != scores.shape: mask = mask.expand(scores.shape) scores = scores.masked_fill(~mask, fill)
attention = torch.softmax(scores, dim=-1) return torch.matmul(attention, V)
def _build_causal_mask( batch_dims: tuple[int, ...], num_heads: int, seq_len: int, device: torch.device ) -> Bool[Tensor, " ..."]: mask = torch.ones(seq_len, seq_len, dtype=torch.bool, device=device).tril() view_shape = (1,) * len(batch_dims) + (1, seq_len, seq_len) return mask.view(view_shape).expand(*batch_dims, num_heads, seq_len, seq_len)
def run_multihead_self_attention( d_model: int, num_heads: int, q_proj_weight: Float[Tensor, " d_k d_in"], k_proj_weight: Float[Tensor, " d_k d_in"], v_proj_weight: Float[Tensor, " d_v d_in"], o_proj_weight: Float[Tensor, " d_model d_v"], in_features: Float[Tensor, " ... sequence_length d_in"], ) -> Float[Tensor, " ... sequence_length d_out"]: """ Given the key, query, and value projection weights of a naive unbatched implementation of multi-head attention, return the output of an optimized batched implementation. This implementation should handle the key, query, and value projections for all heads in a single matrix multiply. This function should not use RoPE. See section 3.2.2 of Vaswani et al., 2017.
Args: d_model (int): Dimensionality of the feedforward input and output. num_heads (int): Number of heads to use in multi-headed attention. max_seq_len (int): Maximum sequence length to pre-cache if your implementation does that. q_proj_weight (Float[Tensor, "d_k d_in"]): Weights for the Q projection k_proj_weight (Float[Tensor, "d_k d_in"]): Weights for the K projection v_proj_weight (Float[Tensor, "d_k d_in"]): Weights for the V projection o_proj_weight (Float[Tensor, "d_model d_v"]): Weights for the output projection in_features (Float[Tensor, "... sequence_length d_in"]): Tensor to run your implementation on.
Returns: Float[Tensor, " ... sequence_length d_out"]: Tensor with the output of running your optimized, batched multi-headed attention implementation with the given QKV projection weights and input features. """ if d_model % num_heads != 0: raise ValueError("d_model must be divisible by num_heads")
head_dim = d_model // num_heads batch_dims = tuple(in_features.shape[:-2]) seq_len = in_features.shape[-2]
def _project(weight: Tensor) -> Tensor: proj = F.linear(in_features, weight, bias=None) new_shape = (*batch_dims, seq_len, num_heads, head_dim) proj = proj.reshape(new_shape) permute_order = list(range(len(batch_dims))) + [len(batch_dims) + 1, len(batch_dims), len(batch_dims) + 2] return proj.permute(permute_order)
q = _project(q_proj_weight) k = _project(k_proj_weight) v = _project(v_proj_weight)
mask = _build_causal_mask(batch_dims, num_heads, seq_len, in_features.device) attn_output = run_scaled_dot_product_attention(q, k, v, mask=mask) permute_order = list(range(len(batch_dims))) + [len(batch_dims) + 1, len(batch_dims), len(batch_dims) + 2] attn_output = attn_output.permute(permute_order) merged = attn_output.reshape(*batch_dims, seq_len, d_model) return F.linear(merged, o_proj_weight, bias=None)
def run_multihead_self_attention_with_rope( d_model: int, num_heads: int, max_seq_len: int, theta: float, q_proj_weight: Float[Tensor, " d_k d_in"], k_proj_weight: Float[Tensor, " d_k d_in"], v_proj_weight: Float[Tensor, " d_v d_in"], o_proj_weight: Float[Tensor, " d_model d_v"], in_features: Float[Tensor, " ... sequence_length d_in"], token_positions: Int[Tensor, " ... sequence_length"] | None = None, ) -> Float[Tensor, " ... sequence_length d_out"]: """ Given the key, query, and value projection weights of a naive unbatched implementation of multi-head attention, return the output of an optimized batched implementation. This implementation should handle the key, query, and value projections for all heads in a single matrix multiply. This version of MHA should include RoPE. In this case, the RoPE embedding dimension must be the head embedding dimension (d_model // num_heads). See section 3.2.2 of Vaswani et al., 2017.
Args: d_model (int): Dimensionality of the feedforward input and output. num_heads (int): Number of heads to use in multi-headed attention. max_seq_len (int): Maximum sequence length to pre-cache if your implementation does that. theta (float): RoPE parameter. q_proj_weight (Float[Tensor, "d_k d_in"]): Weights for the Q projection k_proj_weight (Float[Tensor, "d_k d_in"]): Weights for the K projection v_proj_weight (Float[Tensor, "d_k d_in"]): Weights for the V projection o_proj_weight (Float[Tensor, "d_model d_v"]): Weights for the output projection in_features (Float[Tensor, "... sequence_length d_in"]): Tensor to run your implementation on. token_positions (Int[Tensor, " ... sequence_length"] | None): Optional tensor with the positions of the tokens
Returns: Float[Tensor, " ... sequence_length d_out"]: Tensor with the output of running your optimized, batched multi-headed attention implementation with the given QKV projection weights and input features. """ if d_model % num_heads != 0: raise ValueError("d_model must be divisible by num_heads")
head_dim = d_model // num_heads batch_dims = tuple(in_features.shape[:-2]) seq_len = in_features.shape[-2] device = in_features.device
def _project(weight: Tensor) -> Tensor: proj = F.linear(in_features, weight, bias=None) new_shape = (*batch_dims, seq_len, num_heads, head_dim) proj = proj.reshape(new_shape) permute_order = list(range(len(batch_dims))) + [len(batch_dims) + 1, len(batch_dims), len(batch_dims) + 2] return proj.permute(permute_order)
q = _project(q_proj_weight) k = _project(k_proj_weight) v = _project(v_proj_weight)
if token_positions is None: base = torch.arange(seq_len, device=device, dtype=torch.long) view_shape = (1,) * len(batch_dims) + (seq_len,) token_positions = base.view(view_shape) else: token_positions = torch.as_tensor(token_positions, dtype=torch.long, device=device) target_shape = batch_dims + (seq_len,) if token_positions.shape != target_shape: missing = len(target_shape) - token_positions.ndim if missing < 0: raise ValueError("token_positions has too many dimensions for the provided input") shape = (1,) * missing + tuple(token_positions.shape) token_positions = token_positions.reshape(shape) token_positions = token_positions.expand(target_shape)
rope_positions = token_positions.unsqueeze(-2).expand(*batch_dims, num_heads, seq_len) q = run_rope(head_dim, theta, max_seq_len, q, rope_positions) k = run_rope(head_dim, theta, max_seq_len, k, rope_positions)
mask = _build_causal_mask(batch_dims, num_heads, seq_len, device) attn_output = run_scaled_dot_product_attention(q, k, v, mask=mask) permute_order = list(range(len(batch_dims))) + [len(batch_dims) + 1, len(batch_dims), len(batch_dims) + 2] attn_output = attn_output.permute(permute_order) merged = attn_output.reshape(*batch_dims, seq_len, d_model) return F.linear(merged, o_proj_weight, bias=None)
def run_rope( d_k: int, theta: float, max_seq_len: int, in_query_or_key: Float[Tensor, " ... sequence_length d_k"], token_positions: Int[Tensor, " ... sequence_length"], ) -> Float[Tensor, " ... sequence_length d_k"]: """ Run RoPE for a given input tensor.
Args: d_k (int): Embedding dimension size for the query or key tensor. theta (float): RoPE parameter. max_seq_len (int): Maximum sequence length to pre-cache if your implementation does that. in_query_or_key (Float[Tensor, "... sequence_length d_k"]): Input tensor to run RoPE on. token_positions (Int[Tensor, "... sequence_length"]): Tensor of shape (batch_size, sequence_length) with the token positions Returns: Float[Tensor, " ... sequence_length d_k"]: Tensor with RoPEd input. """ if d_k % 2 != 0: raise ValueError("d_k must be even for RoPE") if theta <= 0: raise ValueError("theta must be positive")
x = in_query_or_key device = x.device dtype = x.dtype seq_len = x.shape[-2]
if token_positions is None: base = torch.arange(seq_len, device=device, dtype=torch.long) view_shape = (1,) * (x.ndim - 2) + (seq_len,) token_positions = base.view(view_shape) else: token_positions = torch.as_tensor(token_positions, dtype=torch.long, device=device) expected_prefix = x.shape[:-1] if token_positions.shape != expected_prefix: missing = len(expected_prefix) - token_positions.ndim if missing < 0: raise ValueError("token_positions incompatible with input shape") shape = (1,) * missing + tuple(token_positions.shape) token_positions = token_positions.reshape(shape) token_positions = token_positions.expand(expected_prefix)
half_dim = d_k // 2 freq_exponents = torch.arange(0, half_dim, device=device, dtype=torch.float32) / half_dim inv_freq = torch.exp(-math.log(theta) * freq_exponents).to(dtype) angles = token_positions.to(dtype).unsqueeze(-1) * inv_freq cos = torch.cos(angles) sin = torch.sin(angles)
reshaped = x.reshape(*x.shape[:-1], half_dim, 2) x_even = reshaped[..., 0] x_odd = reshaped[..., 1] rotated_even = x_even * cos - x_odd * sin rotated_odd = x_even * sin + x_odd * cos prefix_shape = in_query_or_key.shape[:-1] return torch.stack((rotated_even, rotated_odd), dim=-1).reshape(*prefix_shape, d_k)
def run_transformer_block( d_model: int, num_heads: int, d_ff: int, max_seq_len: int, theta: float, weights: dict[str, Tensor], in_features: Float[Tensor, " batch sequence_length d_model"], ) -> Float[Tensor, " batch sequence_length d_model"]: """ Given the weights of a pre-norm Transformer block and input features, return the output of running the Transformer block on the input features.
This function should use RoPE. Depending on your implementation, you may simply need to pass the relevant args to your TransformerBlock constructor, or you may need to initialize your own RoPE class and pass that instead.
Args: d_model (int): The dimensionality of the Transformer block input. num_heads (int): Number of heads to use in multi-headed attention. `d_model` must be evenly divisible by `num_heads`. d_ff (int): Dimensionality of the feed-forward inner layer. max_seq_len (int): Maximum sequence length to pre-cache if your implementation does that. theta (float): RoPE parameter. weights (dict[str, Tensor]): State dict of our reference implementation. The keys of this dictionary are: - `attn.q_proj.weight` The query projections for all `num_heads` attention heads. Shape is (d_model, d_model). The rows are ordered by matrices of shape (num_heads, d_k), so `attn.q_proj.weight == torch.cat([q_heads.0.weight, ..., q_heads.N.weight], dim=0)`. - `attn.k_proj.weight` The key projections for all `num_heads` attention heads. Shape is (d_model, d_model). The rows are ordered by matrices of shape (num_heads, d_k), so `attn.k_proj.weight == torch.cat([k_heads.0.weight, ..., k_heads.N.weight], dim=0)`. - `attn.v_proj.weight` The value projections for all `num_heads` attention heads. Shape is (d_model, d_model). The rows are ordered by matrices of shape (num_heads, d_v), so `attn.v_proj.weight == torch.cat([v_heads.0.weight, ..., v_heads.N.weight], dim=0)`. - `attn.output_proj.weight` Weight of the multi-head self-attention output projection Shape is (d_model, d_model). - `ln1.weight` Weights of affine transform for the first RMSNorm applied in the transformer block. Shape is (d_model,). - `ffn.w1.weight` Weight of the first linear transformation in the FFN. Shape is (d_model, d_ff). - `ffn.w2.weight` Weight of the second linear transformation in the FFN. Shape is (d_ff, d_model). - `ffn.w3.weight` Weight of the third linear transformation in the FFN. Shape is (d_model, d_ff). - `ln2.weight` Weights of affine transform for the second RMSNorm applied in the transformer block. Shape is (d_model,). in_features (Float[Tensor, "batch sequence_length d_model"]): Tensor to run your implementation on.
Returns: Float[Tensor, "batch sequence_length d_model"] Tensor with the output of running the Transformer block on the input features while using RoPE. """ eps = 1e-5 batch_dims = tuple(in_features.shape[:-2]) seq_len = in_features.shape[-2] device = in_features.device
base_positions = torch.arange(seq_len, device=device, dtype=torch.long) view_shape = (1,) * len(batch_dims) + (seq_len,) token_positions = base_positions.view(view_shape).expand(*batch_dims, seq_len)
attn_input = run_rmsnorm(d_model=d_model, eps=eps, weights=weights["ln1.weight"], in_features=in_features) attn_output = run_multihead_self_attention_with_rope( d_model=d_model, num_heads=num_heads, max_seq_len=max_seq_len, theta=theta, q_proj_weight=weights["attn.q_proj.weight"], k_proj_weight=weights["attn.k_proj.weight"], v_proj_weight=weights["attn.v_proj.weight"], o_proj_weight=weights["attn.output_proj.weight"], in_features=attn_input, token_positions=token_positions, ) residual = in_features + attn_output
ffn_input = run_rmsnorm(d_model=d_model, eps=eps, weights=weights["ln2.weight"], in_features=residual) ffn_output = run_swiglu( d_model=d_model, d_ff=d_ff, w1_weight=weights["ffn.w1.weight"], w2_weight=weights["ffn.w2.weight"], w3_weight=weights["ffn.w3.weight"], in_features=ffn_input, ) return residual + ffn_output
def run_transformer_lm( vocab_size: int, context_length: int, d_model: int, num_layers: int, num_heads: int, d_ff: int, rope_theta: float, weights: dict[str, Tensor], in_indices: Int[Tensor, " batch_size sequence_length"], ) -> Float[Tensor, " batch_size sequence_length vocab_size"]: """Given the weights of a Transformer language model and input indices, return the output of running a forward pass on the input indices.
This function should use RoPE.
Args: vocab_size (int): The number of unique items in the output vocabulary to be predicted. context_length (int): The maximum number of tokens to process at once. d_model (int): The dimensionality of the model embeddings and sublayer outputs. num_layers (int): The number of Transformer layers to use. num_heads (int): Number of heads to use in multi-headed attention. `d_model` must be evenly divisible by `num_heads`. d_ff (int): Dimensionality of the feed-forward inner layer (section 3.3). rope_theta (float): The RoPE $\\Theta$ parameter. weights (dict[str, Tensor]): State dict of our reference implementation. {num_layers} refers to an integer between `0` and `num_layers - 1` (the layer index). The keys of this dictionary are: - `token_embeddings.weight` Token embedding matrix. Shape is (vocab_size, d_model). - `layers.{num_layers}.attn.q_proj.weight` The query projections for all `num_heads` attention heads. Shape is (num_heads * (d_model / num_heads), d_model). The rows are ordered by matrices of shape (num_heads, d_k), so `attn.q_proj.weight == torch.cat([q_heads.0.weight, ..., q_heads.N.weight], dim=0)`. - `layers.{num_layers}.attn.k_proj.weight` The key projections for all `num_heads` attention heads. Shape is (num_heads * (d_model / num_heads), d_model). The rows are ordered by matrices of shape (num_heads, d_k), so `attn.k_proj.weight == torch.cat([k_heads.0.weight, ..., k_heads.N.weight], dim=0)`. - `layers.{num_layers}.attn.v_proj.weight` The value projections for all `num_heads` attention heads. Shape is (num_heads * (d_model / num_heads), d_model). The rows are ordered by matrices of shape (num_heads, d_v), so `attn.v_proj.weight == torch.cat([v_heads.0.weight, ..., v_heads.N.weight], dim=0)`. - `layers.{num_layers}.attn.output_proj.weight` Weight of the multi-head self-attention output projection Shape is ((d_model / num_heads) * num_heads, d_model). - `layers.{num_layers}.ln1.weight` Weights of affine transform for the first RMSNorm applied in the transformer block. Shape is (d_model,). - `layers.{num_layers}.ffn.w1.weight` Weight of the first linear transformation in the FFN. Shape is (d_model, d_ff). - `layers.{num_layers}.ffn.w2.weight` Weight of the second linear transformation in the FFN. Shape is (d_ff, d_model). - `layers.{num_layers}.ffn.w3.weight` Weight of the third linear transformation in the FFN. Shape is (d_model, d_ff). - `layers.{num_layers}.ln2.weight` Weights of affine transform for the second RMSNorm applied in the transformer block. Shape is (d_model,). - `ln_final.weight` Weights of affine transform for RMSNorm applied to the output of the final transformer block. Shape is (d_model, ). - `lm_head.weight` Weights of the language model output embedding. Shape is (vocab_size, d_model). in_indices (Int[Tensor, "batch_size sequence_length"]) Tensor with input indices to run the language model on. Shape is (batch_size, sequence_length), where `sequence_length` is at most `context_length`.
Returns: Float[Tensor, "batch_size sequence_length vocab_size"]: Tensor with the predicted unnormalized next-word distribution for each token. """ if in_indices.shape[-1] > context_length: raise ValueError("sequence length exceeds context length")
x = run_embedding( vocab_size=vocab_size, d_model=d_model, weights=weights["token_embeddings.weight"], token_ids=in_indices, )
for layer_idx in range(num_layers): prefix = f"layers.{layer_idx}." layer_weights = {k[len(prefix) :]: v for k, v in weights.items() if k.startswith(prefix)} x = run_transformer_block( d_model=d_model, num_heads=num_heads, d_ff=d_ff, max_seq_len=context_length, theta=rope_theta, weights=layer_weights, in_features=x, )
x = run_rmsnorm(d_model=d_model, eps=1e-5, weights=weights["ln_final.weight"], in_features=x) logits = run_linear( d_in=d_model, d_out=vocab_size, weights=weights["lm_head.weight"], in_features=x, ) return logits
def run_rmsnorm( d_model: int, eps: float, weights: Float[Tensor, " d_model"], in_features: Float[Tensor, " ... d_model"], ) -> Float[Tensor, " ... d_model"]: """Given the weights of a RMSNorm affine transform, return the output of running RMSNorm on the input features.
Args: d_model (int): The dimensionality of the RMSNorm input. eps: (float): A value added to the denominator for numerical stability. weights (Float[Tensor, "d_model"]): RMSNorm weights. in_features (Float[Tensor, "... d_model"]): Input features to run RMSNorm on. Can have arbitrary leading dimensions.
Returns: Float[Tensor,"... d_model"]: Tensor of with the same shape as `in_features` with the output of running RMSNorm of the `in_features`. """ if weights.shape != (d_model,): msg = f"weights shape {tuple(weights.shape)} does not match ({d_model},)" raise ValueError(msg) if in_features.shape[-1] != d_model: msg = f"Input features last dimension {in_features.shape[-1]} does not equal d_model {d_model}" raise ValueError(msg)
variance = in_features.pow(2).mean(dim=-1, keepdim=True) scale = torch.rsqrt(variance + eps) return in_features * scale * weights
def run_silu(in_features: Float[Tensor, " ..."]) -> Float[Tensor, " ..."]: """Given a tensor of inputs, return the output of applying SiLU to each element.
Args: in_features(Float[Tensor, "..."]): Input features to run SiLU on. Shape is arbitrary.
Returns: Float[Tensor,"..."]: of with the same shape as `in_features` with the output of applying SiLU to each element. """ return F.silu(in_features)
def run_get_batch( dataset: npt.NDArray, batch_size: int, context_length: int, device: str ) -> tuple[torch.Tensor, torch.Tensor]: """ Given a dataset (a 1D numpy array of integers) and a desired batch size and context length, sample language modeling input sequences and their corresponding labels from the dataset.
Args: dataset (np.array): 1D numpy array of integer token IDs in the dataset. batch_size (int): Desired batch size to sample. context_length (int): Desired context length of each sampled example. device (str): PyTorch device string (e.g., 'cpu' or 'cuda:0') indicating the device to place the sampled input sequences and labels on.
Returns: Tuple of torch.LongTensors of shape (batch_size, context_length). The first tuple item is the sampled input sequences, and the second tuple item is the corresponding language modeling labels. """ data = torch.as_tensor(dataset, dtype=torch.long) if data.ndim != 1: raise ValueError("dataset must be 1D") if context_length <= 0: raise ValueError("context_length must be positive") if context_length >= data.shape[0]: raise ValueError("context_length must be smaller than dataset length")
max_start = data.shape[0] - context_length starts = torch.randint(0, max_start, (batch_size,)) offsets = torch.arange(context_length) x = data[starts.unsqueeze(1) + offsets] y = data[starts.unsqueeze(1) + offsets + 1]
target_device = torch.device(device) return x.to(target_device), y.to(target_device)
def run_softmax(in_features: Float[Tensor, " ..."], dim: int) -> Float[Tensor, " ..."]: """ Given a tensor of inputs, return the output of softmaxing the given `dim` of the input.
Args: in_features (Float[Tensor, "..."]): Input features to softmax. Shape is arbitrary. dim (int): Dimension of the `in_features` to apply softmax to.
Returns: Float[Tensor, "..."]: Tensor of with the same shape as `in_features` with the output of softmax normalizing the specified `dim`. """ shifted = in_features - in_features.max(dim=dim, keepdim=True).values exps = shifted.exp() return exps / exps.sum(dim=dim, keepdim=True)
def run_cross_entropy( inputs: Float[Tensor, " batch_size vocab_size"], targets: Int[Tensor, " batch_size"] ) -> Float[Tensor, ""]: """Given a tensor of inputs and targets, compute the average cross-entropy loss across examples.
Args: inputs (Float[Tensor, "batch_size vocab_size"]): inputs[i][j] is the unnormalized logit of jth class for the ith example. targets (Int[Tensor, "batch_size"]): Tensor of shape (batch_size,) with the index of the correct class. Each value must be between 0 and `num_classes - 1`.
Returns: Float[Tensor, ""]: The average cross-entropy loss across examples. """ logits = inputs.to(torch.float32) targets = targets.to(torch.long) log_probs = logits.log_softmax(dim=-1) return F.nll_loss(log_probs, targets, reduction="mean")
def run_gradient_clipping(parameters: Iterable[torch.nn.Parameter], max_l2_norm: float) -> None: """Given a set of parameters, clip their combined gradients to have l2 norm at most max_l2_norm.
Args: parameters (Iterable[torch.nn.Parameter]): collection of trainable parameters. max_l2_norm (float): a positive value containing the maximum l2-norm.
The gradients of the parameters (parameter.grad) should be modified in-place. """ clip_grad_norm_(parameters, max_l2_norm)
def get_adamw_cls() -> Any: """ Returns a torch.optim.Optimizer that implements AdamW. """ return torch.optim.AdamW
def run_get_lr_cosine_schedule( it: int, max_learning_rate: float, min_learning_rate: float, warmup_iters: int, cosine_cycle_iters: int, ): """ Given the parameters of a cosine learning rate decay schedule (with linear warmup) and an iteration number, return the learning rate at the given iteration under the specified schedule.
Args: it (int): Iteration number to get learning rate for. max_learning_rate (float): alpha_max, the maximum learning rate for cosine learning rate schedule (with warmup). min_learning_rate (float): alpha_min, the minimum / final learning rate for the cosine learning rate schedule (with warmup). warmup_iters (int): T_w, the number of iterations to linearly warm-up the learning rate. cosine_cycle_iters (int): T_c, the number of cosine annealing iterations.
Returns: Learning rate at the given iteration under the specified schedule. """ if warmup_iters < 0 or cosine_cycle_iters < 0: raise ValueError("warmup_iters and cosine_cycle_iters must be non-negative")
if warmup_iters > 0 and it <= warmup_iters: return max_learning_rate * (it / warmup_iters)
if cosine_cycle_iters <= 0: return min_learning_rate
if it >= cosine_cycle_iters: return min_learning_rate
cosine_span = max(cosine_cycle_iters - warmup_iters, 1) progress = (it - warmup_iters) / cosine_span progress = min(max(progress, 0.0), 1.0) cosine = 0.5 * (1 + math.cos(math.pi * progress)) return min_learning_rate + (max_learning_rate - min_learning_rate) * cosine
def run_save_checkpoint( model: torch.nn.Module, optimizer: torch.optim.Optimizer, iteration: int, out: str | os.PathLike | BinaryIO | IO[bytes], ): """ Given a model, optimizer, and an iteration number, serialize them to disk.
Args: model (torch.nn.Module): Serialize the state of this model. optimizer (torch.optim.Optimizer): Serialize the state of this optimizer. iteration (int): Serialize this value, which represents the number of training iterations we've completed. out (str | os.PathLike | BinaryIO | IO[bytes]): Path or file-like object to serialize the model, optimizer, and iteration to. """ state = { "model": model.state_dict(), "optimizer": optimizer.state_dict(), "iteration": int(iteration), } torch.save(state, out)
def run_load_checkpoint( src: str | os.PathLike | BinaryIO | IO[bytes], model: torch.nn.Module, optimizer: torch.optim.Optimizer, ) -> int: """ Given a serialized checkpoint (path or file-like object), restore the serialized state to the given model and optimizer. Return the number of iterations that we previously serialized in the checkpoint.
Args: src (str | os.PathLike | BinaryIO | IO[bytes]): Path or file-like object to serialized checkpoint. model (torch.nn.Module): Restore the state of this model. optimizer (torch.optim.Optimizer): Restore the state of this optimizer. Returns: int: the previously-serialized number of iterations. """ checkpoint = torch.load(src, map_location="cpu") model.load_state_dict(checkpoint["model"]) optimizer.load_state_dict(checkpoint["optimizer"]) return int(checkpoint["iteration"])
class _BPETokenizer: """Simple GPT-2 style BPE tokenizer supporting streaming inputs."""
_STREAM_CHUNK_SIZE = 8192
def __init__( self, vocab: dict[int, bytes], merges: list[tuple[bytes, bytes]], special_tokens: list[str] | None, ) -> None: self._pretokenizer = regex.compile(GPT2_PRETOKENIZER_PATTERN)
self._id_to_token_bytes: dict[int, bytes] = {} self._token_bytes_to_id: dict[bytes, int] = {} for token_id, token_bytes in vocab.items(): idx = int(token_id) if not isinstance(token_bytes, (bytes, bytearray)): token_bytes = bytes(token_bytes) else: token_bytes = bytes(token_bytes) self._id_to_token_bytes[idx] = token_bytes self._token_bytes_to_id[token_bytes] = idx
self._pair_ranks: dict[tuple[bytes, bytes], int] = {} for rank, pair in enumerate(merges): if len(pair) != 2: continue left, right = pair if not isinstance(left, (bytes, bytearray)): left = bytes(left) else: left = bytes(left) if not isinstance(right, (bytes, bytearray)): right = bytes(right) else: right = bytes(right) self._pair_ranks[(left, right)] = rank
self._bpe_cache: dict[bytes, tuple[int, ...]] = {}
deduped_specials: list[str] = [] seen_specials: set[str] = set() if special_tokens: for token in special_tokens: if not isinstance(token, str): msg = f"Expected special tokens to be strings, got {type(token)!r}" raise TypeError(msg) if not token: raise ValueError("Special tokens must be non-empty strings.") if token in seen_specials: continue seen_specials.add(token) deduped_specials.append(token)
self._special_tokens = deduped_specials self._special_token_to_id: dict[str, int] = {} self._special_regex: regex.Pattern[str] | None = None self._special_prefixes: dict[int, set[str]] = {} self._max_special_prefix_len = 0
if self._special_tokens: regex_tokens = sorted(self._special_tokens, key=len, reverse=True) pattern = "|".join(regex.escape(token) for token in regex_tokens) self._special_regex = regex.compile(pattern) for token in self._special_tokens: token_bytes = token.encode("utf-8") token_id = self._token_bytes_to_id.get(token_bytes) if token_id is None: msg = f"Special token {token!r} does not exist in the vocabulary." raise ValueError(msg) self._special_token_to_id[token] = token_id for prefix_len in range(1, len(token)): self._special_prefixes.setdefault(prefix_len, set()).add(token[:prefix_len]) if len(token) > 1: self._max_special_prefix_len = max(self._max_special_prefix_len, len(token) - 1)
def encode(self, text: str) -> list[int]: if not isinstance(text, str): msg = f"Tokenizer.encode expects a string, got {type(text)!r}" raise TypeError(msg) return list(self._encode_from_chunks([text]))
def encode_iterable(self, iterable: Iterable[str] | IO[str]) -> Iterable[int]: chunks = self._chunk_source(iterable)
def generator() -> Iterable[int]: yield from self._encode_from_chunks(chunks)
return generator()
def decode(self, token_ids: Iterable[int]) -> str: byte_segments: list[bytes] = [] for token_id in token_ids: idx = int(token_id) try: token_bytes = self._id_to_token_bytes[idx] except KeyError as exc: raise KeyError(f"Unknown token id {idx}") from exc byte_segments.append(token_bytes) data = b"".join(byte_segments) if not data: return "" try: return data.decode("utf-8") except UnicodeDecodeError: return data.decode("latin-1")
def _chunk_source(self, source: Iterable[str] | IO[str]) -> Iterable[str]: read_method = getattr(source, "read", None) if callable(read_method): while True: chunk = read_method(self._STREAM_CHUNK_SIZE) if not chunk: break if not isinstance(chunk, str): chunk = chunk.decode("utf-8") if chunk: yield chunk return for chunk in source: if not isinstance(chunk, str): msg = f"encode_iterable expects strings, got {type(chunk)!r}" raise TypeError(msg) if chunk: yield chunk
def _encode_from_chunks(self, chunks: Iterable[str]) -> Iterable[int]: for segment, is_special in self._split_on_special(chunks): if not segment: continue if is_special: yield self._special_token_to_id[segment] continue for match in self._pretokenizer.finditer(segment): piece = match.group(0) if not piece: continue token_bytes = piece.encode("utf-8") if not token_bytes: continue yield from self._bpe(token_bytes)
def _split_on_special(self, chunks: Iterable[str]) -> Iterable[tuple[str, bool]]: if not self._special_regex: for chunk in chunks: if chunk: yield chunk, False return
buffer = "" for chunk in chunks: if not chunk: continue buffer += chunk while True: match = self._special_regex.search(buffer) if not match: break start, end = match.span() if start: yield buffer[:start], False yield match.group(0), True buffer = buffer[end:] keep = self._pending_special_prefix_length(buffer) if keep == 0: if buffer: yield buffer, False buffer = "" else: safe_len = len(buffer) - keep if safe_len > 0: yield buffer[:safe_len], False buffer = buffer[safe_len:] if buffer: yield buffer, False
def _pending_special_prefix_length(self, text: str) -> int: if self._max_special_prefix_len == 0 or not text: return 0 upto = min(len(text), self._max_special_prefix_len) for length in range(upto, 0, -1): suffix = text[-length:] prefixes = self._special_prefixes.get(length) if prefixes and suffix in prefixes: return length return 0
def _bpe(self, token_bytes: bytes) -> tuple[int, ...]: cached = self._bpe_cache.get(token_bytes) if cached is not None: return cached
if token_bytes in self._token_bytes_to_id: result = (self._token_bytes_to_id[token_bytes],) self._bpe_cache[token_bytes] = result return result
word = tuple(token_bytes[i : i + 1] for i in range(len(token_bytes))) pairs = self._get_pairs(word)
while pairs: best_pair = min( pairs, key=lambda pair: self._pair_ranks.get(pair, float("inf")), ) if best_pair not in self._pair_ranks: break first, second = best_pair new_word: list[bytes] = [] i = 0 while i < len(word): if ( i < len(word) - 1 and word[i] == first and word[i + 1] == second ): new_word.append(word[i] + word[i + 1]) i += 2 else: new_word.append(word[i]) i += 1 word = tuple(new_word) if len(word) == 1: break pairs = self._get_pairs(word)
result = tuple(self._token_bytes_to_id[symbol] for symbol in word) self._bpe_cache[token_bytes] = result return result
@staticmethod def _get_pairs(word: tuple[bytes, ...]) -> set[tuple[bytes, bytes]]: pairs: set[tuple[bytes, bytes]] = set() if len(word) < 2: return pairs prev = word[0] for symbol in word[1:]: pairs.add((prev, symbol)) prev = symbol return pairs
def get_tokenizer( vocab: dict[int, bytes], merges: list[tuple[bytes, bytes]], special_tokens: list[str] | None = None, ) -> Any: """Given a vocabulary, a list of merges, and a list of special tokens, return a BPE tokenizer that uses the provided vocab, merges, and special tokens.
Args: vocab (dict[int, bytes]): The tokenizer vocabulary, a mapping from int (token ID in the vocabulary) to bytes (token bytes) merges (list[tuple[bytes, bytes]]): BPE merges. Each list item is a tuple of bytes (<token1>, <token2>), representing that <token1> was merged with <token2>. Merges are ordered by order of creation. special_tokens (list[str] | None): A list of string special tokens for the tokenizer. These strings will never be split into multiple tokens, and will always be kept as a single token.
Returns: A BPE tokenizer that uses the provided vocab, merges, and special tokens. """ if vocab is None: raise ValueError("vocab must be provided.") if merges is None: raise ValueError("merges must be provided.") return _BPETokenizer(vocab, merges, special_tokens or [])
def run_train_bpe( input_path: str | os.PathLike, vocab_size: int, special_tokens: list[str], **kwargs, ) -> tuple[dict[int, bytes], list[tuple[bytes, bytes]]]: """Given the path to an input corpus, run train a BPE tokenizer and output its vocabulary and merges.
Args: input_path (str | os.PathLike): Path to BPE tokenizer training data. vocab_size (int): Total number of items in the tokenizer's vocabulary (including special tokens). special_tokens (list[str]): A list of string special tokens to be added to the tokenizer vocabulary. These strings will never be split into multiple tokens, and will always be kept as a single token. If these special tokens occur in the input_path, they are treated as any other string.
Returns: tuple[dict[int, bytes], list[tuple[bytes, bytes]]]: vocab: The trained tokenizer vocabulary, a mapping from int (token ID in the vocabulary) to bytes (token bytes) merges: BPE merges. Each list item is a tuple of bytes (<token1>, <token2>), representing that <token1> was merged with <token2>. Merges are ordered by order of creation. """ pat_str = kwargs.get("pat_str", GPT2_PRETOKENIZER_PATTERN) special_tokens = special_tokens or [] unique_special_tokens: list[str] = [] seen_specials: set[str] = set()
for token in special_tokens: if not isinstance(token, str): msg = f"Expected special tokens to be strings, got {type(token)!r}" raise TypeError(msg) if token not in seen_specials: seen_specials.add(token) unique_special_tokens.append(token) special_tokens_bytes = [token.encode("utf-8") for token in unique_special_tokens] num_special_tokens = len(special_tokens_bytes)
if vocab_size < 2**8 + num_special_tokens: msg = "vocab_size must be at least 256 + number of special tokens" raise ValueError(msg)
merges_target = vocab_size - num_special_tokens - 2**8 pretokenizer = regex.compile(pat_str)
with open(input_path, "r", encoding="utf-8") as f: text = f.read()
words: list[list[int]] = [] word_frequencies: list[int] = [] word_lookup: dict[str, int] = {}
removable_specials = [token for token in unique_special_tokens if token] segments = [text] if removable_specials: escaped = [regex.escape(token) for token in removable_specials] split_pattern = regex.compile("|".join(escaped)) segments = [segment for segment in split_pattern.split(text) if segment]
for segment in segments: for match in pretokenizer.finditer(segment): token = match.group(0) if not token: continue idx = word_lookup.get(token) if idx is None: token_bytes = token.encode("utf-8") if not token_bytes: continue idx = len(words) word_lookup[token] = idx words.append(list(token_bytes)) word_frequencies.append(0) word_frequencies[idx] += 1
token_id_to_bytes: dict[int, bytes] = {i: bytes([i]) for i in range(256)} merges: list[tuple[bytes, bytes]] = [] next_token_id = 256
pair_stats: Counter[tuple[int, int]] = Counter() pair_indices: dict[tuple[int, int], set[int]] = {} word_pair_counters: list[Counter[tuple[int, int]]] = []
for idx, token_ids in enumerate(words): freq = word_frequencies[idx] if freq == 0 or len(token_ids) < 2: word_pair_counters.append(Counter()) continue pair_counter = Counter(zip(token_ids[:-1], token_ids[1:])) word_pair_counters.append(pair_counter) for pair, count in pair_counter.items(): pair_stats[pair] += count * freq pair_indices.setdefault(pair, set()).add(idx)
def remove_word_from_stats(word_idx: int) -> None: counter = word_pair_counters[word_idx] if not counter: return freq = word_frequencies[word_idx] for pair, count in counter.items(): pair_stats[pair] -= count * freq if pair_stats[pair] <= 0: pair_stats.pop(pair, None) indices = pair_indices.get(pair) if indices is not None: indices.discard(word_idx) if not indices: pair_indices.pop(pair, None)
def add_word_to_stats(word_idx: int) -> None: tokens = words[word_idx] if len(tokens) < 2: word_pair_counters[word_idx] = Counter() return counter = Counter(zip(tokens[:-1], tokens[1:])) word_pair_counters[word_idx] = counter freq = word_frequencies[word_idx] for pair, count in counter.items(): pair_stats[pair] += count * freq pair_indices.setdefault(pair, set()).add(word_idx)
def merge_word(word_idx: int, pair: tuple[int, int], new_token_id: int) -> None: tokens = words[word_idx] if len(tokens) < 2: return merged: list[int] = [] i = 0 while i < len(tokens): if i < len(tokens) - 1 and tokens[i] == pair[0] and tokens[i + 1] == pair[1]: merged.append(new_token_id) i += 2 else: merged.append(tokens[i]) i += 1 words[word_idx] = merged
for _ in range(max(0, merges_target)): if not pair_stats: break
def pair_priority(item: tuple[tuple[int, int], int]) -> tuple[int, bytes, bytes]: (left_id, right_id), count = item return count, token_id_to_bytes[left_id], token_id_to_bytes[right_id]
best_pair, _ = max(pair_stats.items(), key=pair_priority) left_bytes = token_id_to_bytes[best_pair[0]] right_bytes = token_id_to_bytes[best_pair[1]] merges.append((left_bytes, right_bytes)) new_token_id = next_token_id token_id_to_bytes[new_token_id] = left_bytes + right_bytes
affected_words = pair_indices.pop(best_pair, set()) if not affected_words: next_token_id += 1 pair_stats.pop(best_pair, None) continue
for word_idx in sorted(affected_words): remove_word_from_stats(word_idx) merge_word(word_idx, best_pair, new_token_id) add_word_to_stats(word_idx) pair_stats.pop(best_pair, None) next_token_id += 1
vocab: dict[int, bytes] = { idx: token for idx, token in token_id_to_bytes.items() if idx < next_token_id }
for token_bytes in special_tokens_bytes: if len(vocab) >= vocab_size: break vocab[next_token_id] = token_bytes next_token_id += 1
return vocab, merges
|